Euler–Lagrangian Approach to Stochastic Euler Equations in Sobolev Spaces
The purpose of this paper is to establish the equivalence between Lagrangian and classical formulations for the stochastic incompressible Euler equations, the proof is based on Ito–Wentzell–Kunita formula and stochastic analysis techniques. Moreover, we prove a local existence result for the Lagrang...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2023-08, Vol.25 (3), Article 61 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to establish the equivalence between Lagrangian and classical formulations for the stochastic incompressible Euler equations, the proof is based on Ito–Wentzell–Kunita formula and stochastic analysis techniques. Moreover, we prove a local existence result for the Lagrangian formulation in suitable Sobolev Spaces. |
---|---|
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-023-00808-5 |