Fire Spalling Behavior of Various Polymer Modified Mortars under Ring Restraint
Polymer modified mortar (PMM) is indispensable for repairing and reinforcing concrete structures owing to its excellent adhesion to concrete, compactness, and workability. However, PMM tends to spall when exposed to high temperatures because it contains organic polymers. In this study, a ring-restra...
Gespeichert in:
Veröffentlicht in: | Journal of Advanced Concrete Technology 2023/05/12, Vol.21(5), pp.367-379 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymer modified mortar (PMM) is indispensable for repairing and reinforcing concrete structures owing to its excellent adhesion to concrete, compactness, and workability. However, PMM tends to spall when exposed to high temperatures because it contains organic polymers. In this study, a ring-restrained heating test was performed on normal cement mortar and PMM mixed with three types of polymers to investigate the factors that affect fire spalling, such as differences in fire spalling magnitude, restraint stress, and water vapor pressure. Furthermore, a tensile strain failure model based on thermal stress theory was used to evaluate temporal changes in fire spalling depth. |
---|---|
ISSN: | 1346-8014 1347-3913 |
DOI: | 10.3151/jact.21.367 |