In Situ Formation ZnIn2S4/Mo2TiC2 Schottky Junction for Accelerating Photocatalytic Hydrogen Evolution Kinetics: Manipulation of Local Coordination and Electronic Structure

Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2S4/Mo2TiC2 Schottky junctions are designed to be constructed through the interfacial local coordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (24), p.n/a
Hauptverfasser: Xi, Qing, Xie, Fangxia, Liu, Jianxin, Zhang, Xiaochao, Wang, Jiancheng, Wang, Yawen, Wang, Yunfang, Li, Houfen, Yu, Zhuobin, Sun, Zijun, Jian, Xuan, Gao, Xiaoming, Ren, Jun, Fan, Caimei, Li, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2S4/Mo2TiC2 Schottky junctions are designed to be constructed through the interfacial local coordination of In3+ with the electronegative O terminal group on Mo2TiC2 based on the different work functions. Kelvin probe force microscopy and charge density difference reveal that an electronic unidirectional transport channel across the Schottky interface from ZnIn2S4 to Mo2TiC2 is established by the formed local nucleophilic/electrophilic region. The increased local electron density of Mo2TiC2 inhibits the backflow of electrons, boosts the charge transfer and separation, and optimizes the hydrogen adsorption energy. Therefore, the ZnIn2S4/Mo2TiC2 photocatalyst exhibits a superior PHE rate of 3.12 mmol g−1 h−1 under visible light, reaching 3.03 times that of the pristine ZnIn2S4. This work provides some insights and inspiration for preparing MXene‐based Schottky catalysts to accelerate PHE kinetics. The manipulation of local coordination and electron structure at the ZnIn2S4/Mo2TiC2 Schottky interface ensures the spontaneous unidirectional transfer and spatial separation of photogenerated electrons from ZnIn2S4 to Mo2TiC2. Simultaneously, the increase of electron density further balances the hydrogen adsorption energy on the surface of Mo2TiC2 and provides a favorable active site for hydrogen evolution reaction.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202300717