Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions
We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Zhaoyu Xu, Taiyang Fan, Engui |
description | We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825307088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825307088</sourcerecordid><originalsourceid>FETCH-proquest_journals_28253070883</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBb1DgOuCzGxtntRBDcuRHAlsRltSp3Y_Ch6I8_hxVTwAK7e4n0dlggpx2kxEaLHht7XnHMxzUWWyYTt1spQg9fXE4JT5EskjRQ8GIJQIWg82jJ6Qyc4r_QWsI0qGEtwM6ECspQ-0Fk42EhauTuUlrT5Aj9g3aNqPA5_7bPRYr6ZLdOLs21EH_a1jY4-ay8KkUme86KQ_6k3xOZD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825307088</pqid></control><display><type>article</type><title>Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions</title><source>Free E- Journals</source><creator>Wang, Zhaoyu ; Xu, Taiyang ; Fan, Engui</creator><creatorcontrib>Wang, Zhaoyu ; Xu, Taiyang ; Fan, Engui</creatorcontrib><description>We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Defocusing</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wang, Zhaoyu</creatorcontrib><creatorcontrib>Xu, Taiyang</creatorcontrib><creatorcontrib>Fan, Engui</creatorcontrib><title>Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions</title><title>arXiv.org</title><description>We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent.</description><subject>Asymptotic properties</subject><subject>Defocusing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk0KwjAQQOEgCBb1DgOuCzGxtntRBDcuRHAlsRltSp3Y_Ch6I8_hxVTwAK7e4n0dlggpx2kxEaLHht7XnHMxzUWWyYTt1spQg9fXE4JT5EskjRQ8GIJQIWg82jJ6Qyc4r_QWsI0qGEtwM6ECspQ-0Fk42EhauTuUlrT5Aj9g3aNqPA5_7bPRYr6ZLdOLs21EH_a1jY4-ay8KkUme86KQ_6k3xOZD1A</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Wang, Zhaoyu</creator><creator>Xu, Taiyang</creator><creator>Fan, Engui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230728</creationdate><title>Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions</title><author>Wang, Zhaoyu ; Xu, Taiyang ; Fan, Engui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28253070883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Defocusing</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaoyu</creatorcontrib><creatorcontrib>Xu, Taiyang</creatorcontrib><creatorcontrib>Fan, Engui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaoyu</au><au>Xu, Taiyang</au><au>Fan, Engui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions</atitle><jtitle>arXiv.org</jtitle><date>2023-07-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2825307088 |
source | Free E- Journals |
subjects | Asymptotic properties Defocusing |
title | Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Painlev%C3%A9%20transcendents%20in%20the%20defocusing%20mKdV%20equation%20with%20non-zero%20boundary%20conditions&rft.jtitle=arXiv.org&rft.au=Wang,%20Zhaoyu&rft.date=2023-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2825307088%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825307088&rft_id=info:pmid/&rfr_iscdi=true |