Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions

We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Wang, Zhaoyu, Xu, Taiyang, Fan, Engui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent.
ISSN:2331-8422