Painlevé transcendents in the defocusing mKdV equation with non-zero boundary conditions
We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Cauchy problem for the defocusing modified Korteweg-de Vries (mKdV) equation with non-zero boundary conditions, which can be characterized using a Riemann-Hilbert (RH) problem through the inverse scattering transform. Using the \(\bar\partial\) generalization of the Deift-Zhou nonlinear steepest descent approach, combined with the double scaling limit technique, we obtain the long-time asymptotics of the solution of the Cauchy problem in the transition region \(|x/t+6|t^{2/3}< C\) with \(C>0\). The asymptotics is expressed in terms of the solution of the second Painlev\'{e} transcendent. |
---|---|
ISSN: | 2331-8422 |