Affine Phase Retrieval for Sparse Signals via ℓ1 Minimization
Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ 1 minimization to exploit the sparsity of signals for affine phase retrieval, showing that O ( k log ( e n / k ) ) Gaussian random measurements are...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2023-06, Vol.29 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the
ℓ
1
minimization to exploit the sparsity of signals for affine phase retrieval, showing that
O
(
k
log
(
e
n
/
k
)
)
Gaussian random measurements are sufficient to recover all
k
-sparse signals by solving a natural
ℓ
1
minimization program, where
n
is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural
ℓ
1
minimization program for affine phase retrieval is stable. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-023-10022-6 |