Affine Phase Retrieval for Sparse Signals via ℓ1 Minimization

Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ 1 minimization to exploit the sparsity of signals for affine phase retrieval, showing that O ( k log ( e n / k ) ) Gaussian random measurements are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2023-06, Vol.29 (3)
Hauptverfasser: Huang, Meng, Sun, Shixiang, Xu, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ 1 minimization to exploit the sparsity of signals for affine phase retrieval, showing that O ( k log ( e n / k ) ) Gaussian random measurements are sufficient to recover all k -sparse signals by solving a natural ℓ 1 minimization program, where n is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural ℓ 1 minimization program for affine phase retrieval is stable.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-023-10022-6