Supercongruences involving products of three binomial coefficients
Let p > 3 be a prime, and let a be a rational p -adic integer. Using the WZ method we establish the congruences for ∑ k = 0 p - 1 a k - 1 - a k 2 k k w ( k ) 4 k modulo p 3 , where w ( k ) ∈ { 1 , 1 k + 1 , 1 ( k + 1 ) 2 , 1 2 k - 1 } . Taking a = - 1 2 , - 1 3 , - 1 4 , - 1 6 in the congruences...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023-07, Vol.117 (3), Article 131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
>
3
be a prime, and let
a
be a rational
p
-adic integer. Using the WZ method we establish the congruences for
∑
k
=
0
p
-
1
a
k
-
1
-
a
k
2
k
k
w
(
k
)
4
k
modulo
p
3
, where
w
(
k
)
∈
{
1
,
1
k
+
1
,
1
(
k
+
1
)
2
,
1
2
k
-
1
}
. Taking
a
=
-
1
2
,
-
1
3
,
-
1
4
,
-
1
6
in the congruences confirms some conjectures posed by the author earlier. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-023-01458-y |