On a question of Luca and Schinzel over Segal–Piatetski-Shapiro sequences

We extend to Segal–Piatetski-Shapiro sequences previous results on the Luca–Schinzel question. Namely, we prove that for any real c larger than 1, the sequence ( ∑ m ≤ n φ ( ⌊ m c ⌋ ) / ⌊ m c ⌋ ) n ≥ 1 is dense modulo 1, where φ denotes Euler’s totient function. The main part of the proof consists i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2023-07, Vol.61 (3), p.839-850
Hauptverfasser: Deshouillers, Jean-Marc, Hassani, Mehdi, Nasiri-Zare, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend to Segal–Piatetski-Shapiro sequences previous results on the Luca–Schinzel question. Namely, we prove that for any real c larger than 1, the sequence ( ∑ m ≤ n φ ( ⌊ m c ⌋ ) / ⌊ m c ⌋ ) n ≥ 1 is dense modulo 1, where φ denotes Euler’s totient function. The main part of the proof consists in showing that when R is a large integer, the sequence of the residues of ⌊ m c ⌋ modulo R contains any block of consecutive residues of a given length.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-022-00684-z