On a question of Luca and Schinzel over Segal–Piatetski-Shapiro sequences
We extend to Segal–Piatetski-Shapiro sequences previous results on the Luca–Schinzel question. Namely, we prove that for any real c larger than 1, the sequence ( ∑ m ≤ n φ ( ⌊ m c ⌋ ) / ⌊ m c ⌋ ) n ≥ 1 is dense modulo 1, where φ denotes Euler’s totient function. The main part of the proof consists i...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2023-07, Vol.61 (3), p.839-850 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend to Segal–Piatetski-Shapiro sequences previous results on the Luca–Schinzel question. Namely, we prove that for any real
c
larger than 1, the sequence
(
∑
m
≤
n
φ
(
⌊
m
c
⌋
)
/
⌊
m
c
⌋
)
n
≥
1
is dense modulo 1, where
φ
denotes Euler’s totient function. The main part of the proof consists in showing that when
R
is a large integer, the sequence of the residues of
⌊
m
c
⌋
modulo
R
contains any block of consecutive residues of a given length. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-022-00684-z |