Some More Identities of Kanade–Russell Type Derived Using Rosengren’s Method

In the present paper, we consider some variations and generalizations of the multi-sum to single-sum transformation recently used by Rosengren in his proof of the Kanade–Russell identities. These general transformations are then used to prove a number of identities equating multi-sums and infinite p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2023-06, Vol.27 (2), p.329-352
1. Verfasser: Mc Laughlin, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we consider some variations and generalizations of the multi-sum to single-sum transformation recently used by Rosengren in his proof of the Kanade–Russell identities. These general transformations are then used to prove a number of identities equating multi-sums and infinite products or multi-sums and infinite product × a false theta series. Examples include the following: ∑ j , k , p , r = 0 ∞ ( - 1 ) j + k q ( 2 j + k - p + r ) 2 / 2 + k ( k + 4 ) / 2 + 3 j - p / 2 + 3 r / 2 ( - q ; q ) r q 2 ; q 2 j ( q ; q ) k ( q ; q ) p ( q ; q ) r = 2 - q ; q 2 ∞ - q 2 , - q 14 , q 16 ; q 16 ∞ ( q ; q ) ∞ . Let Q ( i , j , k , l , p ) : = 1 2 ( i + 6 j + 4 k + 2 l - p ) ( i + 6 j + 4 k + 2 l - p - 1 ) + 2 k ( k - 1 ) + l ( l - 1 ) + 3 i + 15 j + 14 k + 5 l - 2 p . Then ∑ i , j , k , l , p = 0 ∞ ( - 1 ) l + k q Q ( i , j , k , l , p ) q ; q i q 6 ; q 6 j q 4 ; q 4 k q 2 ; q 2 l ( q ; q ) p = 2 ( - q ; q ) ∞ 2 q q 3 ; q 6 ∞ q 4 ; q 4 ∞ 1 + ∑ r = 1 ∞ q 9 r 2 + 6 r - q 9 r 2 - 6 r . ∑ j , k , p = 0 ∞ ( - 1 ) k q ( 3 j + 2 k - p ) ( 3 j + 2 k - p - 1 ) / 2 + k ( k - 1 ) - p + 6 j + 6 k ( q 3 ; q 3 ) j ( q 2 ; q 2 ) k ( q ; q ) p = ( - 1 ; q ) ∞ ( q 18 ; q 18 ) ∞ ( q 3 ; q 3 ) ∞ ( q 9 ; q 18 ) ∞ .
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-022-00586-3