Anterograde Collisional Analysis of Solar Wind Ions
Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (i...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-06, Vol.950 (1), p.51 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | The Astrophysical journal |
container_volume | 950 |
creator | Johnson, E. Maruca, B. A. McManus, M. Klein, K. G. Lichko, E. R. Verniero, J. Paulson, K. W. DeWeese, H. Dieguez, I. Qudsi, R. A. Kasper, J. Stevens, M. Alterman, B. L. III, L. B. Wilson Livi, R. Rahmati, A. Larson, D. |
description | Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) and α-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP; r = 0.1–0.3 au) and Wind (r = 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun at r = 1.0 au. The distribution of these predicted α–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating of α-particles is largely limited to the corona. |
doi_str_mv | 10.3847/1538-4357/accc32 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824343105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_33eafb4d85154c25a6cfac1bc9673af8</doaj_id><sourcerecordid>2824343105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-64a605a588584248dd78d73dc5b18fcfc4d1c8f9521968a8f22bb6890f3cb7ae3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMzBEgpFQf8cZq4qPSpUYAMFmXey4ShTiYKdD_3sSgmCBxSffvfs93UPonOAbpni2IIKplDORLcAYw-gBmv20DtEMY8xTybK3Y3QSYz1-aZ7PEFu2fRn8NoAtk5VvmipWvoUmWQ7PPlYx8S558g2E5LVqbbL2bTxFRw6aWJ591zl6ubt9Xj2km8f79Wq5SQ2Xsk8lB4kFCKWE4pQrazNlM2aNKIhyxhluiVEuF5TkUoFylBaFVDl2zBQZlGyO1hPXeqh1F6p3CHvtodJfDR-2GkJfmabUjJXgCm6VIIIbKkAaB4YUJpcZA6cG1uXE6oL_2JWx17XfheHGqKminHFGsBhUeFKZ4GMMpftxJViPMesxUz1mqqeYh5WLaaWFCLrtwwDElA0B50SOxKtpXPnu1xK6WucCa6IF0Z11g-z6D9m_pp_gMZIr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824343105</pqid></control><display><type>article</type><title>Anterograde Collisional Analysis of Solar Wind Ions</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><creator>Johnson, E. ; Maruca, B. A. ; McManus, M. ; Klein, K. G. ; Lichko, E. R. ; Verniero, J. ; Paulson, K. W. ; DeWeese, H. ; Dieguez, I. ; Qudsi, R. A. ; Kasper, J. ; Stevens, M. ; Alterman, B. L. ; III, L. B. Wilson ; Livi, R. ; Rahmati, A. ; Larson, D.</creator><creatorcontrib>Johnson, E. ; Maruca, B. A. ; McManus, M. ; Klein, K. G. ; Lichko, E. R. ; Verniero, J. ; Paulson, K. W. ; DeWeese, H. ; Dieguez, I. ; Qudsi, R. A. ; Kasper, J. ; Stevens, M. ; Alterman, B. L. ; III, L. B. Wilson ; Livi, R. ; Rahmati, A. ; Larson, D.</creatorcontrib><description>Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) and α-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP; r = 0.1–0.3 au) and Wind (r = 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun at r = 1.0 au. The distribution of these predicted α–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating of α-particles is largely limited to the corona.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/accc32</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Astronomy ; Astrophysics ; Collision physics ; Corona ; Coulomb collisions ; Helium ; High temperature ; Ions ; Local thermodynamic equilibrium ; Plasma physics ; Protons ; Solar probes ; Solar wind ; Solar wind ions ; Spacecraft</subject><ispartof>The Astrophysical journal, 2023-06, Vol.950 (1), p.51</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-64a605a588584248dd78d73dc5b18fcfc4d1c8f9521968a8f22bb6890f3cb7ae3</citedby><cites>FETCH-LOGICAL-c466t-64a605a588584248dd78d73dc5b18fcfc4d1c8f9521968a8f22bb6890f3cb7ae3</cites><orcidid>0000-0003-1138-652X ; 0000-0002-4313-1970 ; 0000-0001-6077-4145 ; 0000-0003-1945-8460 ; 0000-0002-5699-090X ; 0000-0002-0396-0547 ; 0000-0001-6673-3432 ; 0000-0001-8358-0482 ; 0000-0003-4988-2967 ; 0000-0002-7077-930X ; 0000-0003-0519-6498 ; 0000-0002-7326-1864 ; 0000-0002-2229-5618 ; 0000-0001-6038-1923 ; 0000-0002-8068-7740 ; 0000-0001-5030-6030 ; 0000-0002-7728-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/accc32/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,797,861,2096,27905,27906,38871,53848</link.rule.ids></links><search><creatorcontrib>Johnson, E.</creatorcontrib><creatorcontrib>Maruca, B. A.</creatorcontrib><creatorcontrib>McManus, M.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>Lichko, E. R.</creatorcontrib><creatorcontrib>Verniero, J.</creatorcontrib><creatorcontrib>Paulson, K. W.</creatorcontrib><creatorcontrib>DeWeese, H.</creatorcontrib><creatorcontrib>Dieguez, I.</creatorcontrib><creatorcontrib>Qudsi, R. A.</creatorcontrib><creatorcontrib>Kasper, J.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Alterman, B. L.</creatorcontrib><creatorcontrib>III, L. B. Wilson</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Rahmati, A.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><title>Anterograde Collisional Analysis of Solar Wind Ions</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) and α-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP; r = 0.1–0.3 au) and Wind (r = 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun at r = 1.0 au. The distribution of these predicted α–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating of α-particles is largely limited to the corona.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Collision physics</subject><subject>Corona</subject><subject>Coulomb collisions</subject><subject>Helium</subject><subject>High temperature</subject><subject>Ions</subject><subject>Local thermodynamic equilibrium</subject><subject>Plasma physics</subject><subject>Protons</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind ions</subject><subject>Spacecraft</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>CYI</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwMzBEgpFQf8cZq4qPSpUYAMFmXey4ShTiYKdD_3sSgmCBxSffvfs93UPonOAbpni2IIKplDORLcAYw-gBmv20DtEMY8xTybK3Y3QSYz1-aZ7PEFu2fRn8NoAtk5VvmipWvoUmWQ7PPlYx8S558g2E5LVqbbL2bTxFRw6aWJ591zl6ubt9Xj2km8f79Wq5SQ2Xsk8lB4kFCKWE4pQrazNlM2aNKIhyxhluiVEuF5TkUoFylBaFVDl2zBQZlGyO1hPXeqh1F6p3CHvtodJfDR-2GkJfmabUjJXgCm6VIIIbKkAaB4YUJpcZA6cG1uXE6oL_2JWx17XfheHGqKminHFGsBhUeFKZ4GMMpftxJViPMesxUz1mqqeYh5WLaaWFCLrtwwDElA0B50SOxKtpXPnu1xK6WucCa6IF0Z11g-z6D9m_pp_gMZIr</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Johnson, E.</creator><creator>Maruca, B. A.</creator><creator>McManus, M.</creator><creator>Klein, K. G.</creator><creator>Lichko, E. R.</creator><creator>Verniero, J.</creator><creator>Paulson, K. W.</creator><creator>DeWeese, H.</creator><creator>Dieguez, I.</creator><creator>Qudsi, R. A.</creator><creator>Kasper, J.</creator><creator>Stevens, M.</creator><creator>Alterman, B. L.</creator><creator>III, L. B. Wilson</creator><creator>Livi, R.</creator><creator>Rahmati, A.</creator><creator>Larson, D.</creator><general>The American Astronomical Society</general><general>American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1138-652X</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0001-6077-4145</orcidid><orcidid>https://orcid.org/0000-0003-1945-8460</orcidid><orcidid>https://orcid.org/0000-0002-5699-090X</orcidid><orcidid>https://orcid.org/0000-0002-0396-0547</orcidid><orcidid>https://orcid.org/0000-0001-6673-3432</orcidid><orcidid>https://orcid.org/0000-0001-8358-0482</orcidid><orcidid>https://orcid.org/0000-0003-4988-2967</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0003-0519-6498</orcidid><orcidid>https://orcid.org/0000-0002-7326-1864</orcidid><orcidid>https://orcid.org/0000-0002-2229-5618</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-8068-7740</orcidid><orcidid>https://orcid.org/0000-0001-5030-6030</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid></search><sort><creationdate>20230601</creationdate><title>Anterograde Collisional Analysis of Solar Wind Ions</title><author>Johnson, E. ; Maruca, B. A. ; McManus, M. ; Klein, K. G. ; Lichko, E. R. ; Verniero, J. ; Paulson, K. W. ; DeWeese, H. ; Dieguez, I. ; Qudsi, R. A. ; Kasper, J. ; Stevens, M. ; Alterman, B. L. ; III, L. B. Wilson ; Livi, R. ; Rahmati, A. ; Larson, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-64a605a588584248dd78d73dc5b18fcfc4d1c8f9521968a8f22bb6890f3cb7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Collision physics</topic><topic>Corona</topic><topic>Coulomb collisions</topic><topic>Helium</topic><topic>High temperature</topic><topic>Ions</topic><topic>Local thermodynamic equilibrium</topic><topic>Plasma physics</topic><topic>Protons</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind ions</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, E.</creatorcontrib><creatorcontrib>Maruca, B. A.</creatorcontrib><creatorcontrib>McManus, M.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>Lichko, E. R.</creatorcontrib><creatorcontrib>Verniero, J.</creatorcontrib><creatorcontrib>Paulson, K. W.</creatorcontrib><creatorcontrib>DeWeese, H.</creatorcontrib><creatorcontrib>Dieguez, I.</creatorcontrib><creatorcontrib>Qudsi, R. A.</creatorcontrib><creatorcontrib>Kasper, J.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Alterman, B. L.</creatorcontrib><creatorcontrib>III, L. B. Wilson</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Rahmati, A.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, E.</au><au>Maruca, B. A.</au><au>McManus, M.</au><au>Klein, K. G.</au><au>Lichko, E. R.</au><au>Verniero, J.</au><au>Paulson, K. W.</au><au>DeWeese, H.</au><au>Dieguez, I.</au><au>Qudsi, R. A.</au><au>Kasper, J.</au><au>Stevens, M.</au><au>Alterman, B. L.</au><au>III, L. B. Wilson</au><au>Livi, R.</au><au>Rahmati, A.</au><au>Larson, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anterograde Collisional Analysis of Solar Wind Ions</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>950</volume><issue>1</issue><spage>51</spage><pages>51-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) and α-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP; r = 0.1–0.3 au) and Wind (r = 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun at r = 1.0 au. The distribution of these predicted α–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating of α-particles is largely limited to the corona.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/accc32</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1138-652X</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0001-6077-4145</orcidid><orcidid>https://orcid.org/0000-0003-1945-8460</orcidid><orcidid>https://orcid.org/0000-0002-5699-090X</orcidid><orcidid>https://orcid.org/0000-0002-0396-0547</orcidid><orcidid>https://orcid.org/0000-0001-6673-3432</orcidid><orcidid>https://orcid.org/0000-0001-8358-0482</orcidid><orcidid>https://orcid.org/0000-0003-4988-2967</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0003-0519-6498</orcidid><orcidid>https://orcid.org/0000-0002-7326-1864</orcidid><orcidid>https://orcid.org/0000-0002-2229-5618</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-8068-7740</orcidid><orcidid>https://orcid.org/0000-0001-5030-6030</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-06, Vol.950 (1), p.51 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2824343105 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; NASA Technical Reports Server; Alma/SFX Local Collection |
subjects | Astronomy Astrophysics Collision physics Corona Coulomb collisions Helium High temperature Ions Local thermodynamic equilibrium Plasma physics Protons Solar probes Solar wind Solar wind ions Spacecraft |
title | Anterograde Collisional Analysis of Solar Wind Ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anterograde%20Collisional%20Analysis%20of%20Solar%20Wind%20Ions&rft.jtitle=The%20Astrophysical%20journal&rft.au=Johnson,%20E.&rft.date=2023-06-01&rft.volume=950&rft.issue=1&rft.spage=51&rft.pages=51-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/accc32&rft_dat=%3Cproquest_cross%3E2824343105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824343105&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_33eafb4d85154c25a6cfac1bc9673af8&rfr_iscdi=true |