Anterograde Collisional Analysis of Solar Wind Ions

Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-06, Vol.950 (1), p.51
Hauptverfasser: Johnson, E., Maruca, B. A., McManus, M., Klein, K. G., Lichko, E. R., Verniero, J., Paulson, K. W., DeWeese, H., Dieguez, I., Qudsi, R. A., Kasper, J., Stevens, M., Alterman, B. L., III, L. B. Wilson, Livi, R., Rahmati, A., Larson, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) and α-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP; r = 0.1–0.3 au) and Wind (r = 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun at r = 1.0 au. The distribution of these predicted α–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating of α-particles is largely limited to the corona.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/accc32