Efficient design of a quantum absolute-value circuit using Clifford+T gates

Current quantum computers have a limited number of resources and are heavily affected by internal and external noise. Therefore, small, noise-tolerant circuits are of great interest. With regard to circuit size, it is especially important to reduce the number of required qubits. Concerning to fault-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2023-07, Vol.79 (11), p.12656-12670
Hauptverfasser: Orts, Francisco, Ortega, Gloria, Combarro, Elías F., Rúa, Ignacio F., Puertas, Antonio M., Garzón, Ester M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current quantum computers have a limited number of resources and are heavily affected by internal and external noise. Therefore, small, noise-tolerant circuits are of great interest. With regard to circuit size, it is especially important to reduce the number of required qubits. Concerning to fault-tolerance, circuits entirely built with Clifford+T gates allow the use of error correction codes. However, the T-gate has an excessive cost, so circuits with a high number of T-gates should be avoided. This work focuses on optimising in such terms an operation that is widely used in larger circuits and algorithms: the calculation of the absolute-value of two’s complement encoded integers. The proposed circuit halves the number of required T gates with respect to the best circuit currently available in the literature. Moreover, our circuit requires at least 2 qubits less than the other circuits for such an operation.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-023-05162-x