Universal continuous calculus for Su‐algebras
Universal continuous calculi are defined and it is shown that for every finite tuple of pairwise commuting Hermitian elements of a Su*‐algebra (an ordered *‐algebra that is symmetric, i.e., “strictly” positive elements are invertible and uniformly complete), such a universal continuous calculus exis...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-06, Vol.296 (6), p.2588-2608 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Universal continuous calculi are defined and it is shown that for every finite tuple of pairwise commuting Hermitian elements of a Su*‐algebra (an ordered *‐algebra that is symmetric, i.e., “strictly” positive elements are invertible and uniformly complete), such a universal continuous calculus exists. This generalizes the continuous calculus for C∗$C^*$‐algebras to a class of generally unbounded ordered *‐algebras. On the way, some results about *‐algebras of continuous functions on locally compact spaces are obtained. The approach used throughout is rather elementary and especially avoids any representation theory. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100136 |