Universal continuous calculus for Su‐algebras

Universal continuous calculi are defined and it is shown that for every finite tuple of pairwise commuting Hermitian elements of a Su*‐algebra (an ordered *‐algebra that is symmetric, i.e., “strictly” positive elements are invertible and uniformly complete), such a universal continuous calculus exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-06, Vol.296 (6), p.2588-2608
1. Verfasser: Schötz, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Universal continuous calculi are defined and it is shown that for every finite tuple of pairwise commuting Hermitian elements of a Su*‐algebra (an ordered *‐algebra that is symmetric, i.e., “strictly” positive elements are invertible and uniformly complete), such a universal continuous calculus exists. This generalizes the continuous calculus for C∗$C^*$‐algebras to a class of generally unbounded ordered *‐algebras. On the way, some results about *‐algebras of continuous functions on locally compact spaces are obtained. The approach used throughout is rather elementary and especially avoids any representation theory.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100136