Experimental Research on a Lightweight Miniature Wankel Compressor for a Vapor Compression Refrigeration System in Aerospace
Vapor compression refrigeration is considered one promising technology for dissipating much higher heat fluxes from electronic devices at lower temperatures. The compressor, one key component, has a great effect on the overall size and performance of the system. One lightweight, miniature, hermetic...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-05, Vol.15 (11), p.8826 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vapor compression refrigeration is considered one promising technology for dissipating much higher heat fluxes from electronic devices at lower temperatures. The compressor, one key component, has a great effect on the overall size and performance of the system. One lightweight, miniature, hermetic Wankel compressor was developed to solve limited space cooling problems. The assembled Wankel compressor had a diameter of 65 mm, a length of 85 mm and a weight of 340.2 g, without a motor and housing. An experimental system for miniature refrigeration was set up to explore the optimal refrigerant charge and the performance of the compressor under changing rotational speeds and inlet temperatures of cooling water. The experimental results showed that the optimal refrigerant charge was 220 g and the coefficient of performance was approximately 2.8. The refrigeration coefficient of the system decreased with increases in rotational speed and inlet temperature of the cooling water at a stable cooling capacity of 100 W. The developed lightweight, miniature, hermetic Wankel compressor had reliable performance after running for 600 h, with a power consumption of 35 W and a high coefficient of performance (COP) of 2.63. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15118826 |