On limiting directions of entire solutions of complex differential-difference equations

In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation f n ( z ) + ∑ k = 0 n a λ k ( z ) p λ k ( z , f ) = h ( z ) , where p λ k ( z ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2023, Vol.49 (2), p.381-401
Hauptverfasser: Dai, H. X., Qiao, J. Y., Cao, T. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation f n ( z ) + ∑ k = 0 n a λ k ( z ) p λ k ( z , f ) = h ( z ) , where p λ k ( z , f ) ( λ ∈ ℕ ) are distinct differential-difference monomials, a λ k ( z ) are entire functions of growth smaller than that of the transcendental entire h ( z ). For non-trivial entire solutions f of differential-difference equation P 2 ( z , f ) + A 1 ( z ) P 1 ( z , f ) + A 0 ( z ) = 0 , where P λ ( z,f )(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of f was studied.
ISSN:0133-3852
1588-273X
DOI:10.1007/s10476-023-0213-7