A Generalized Regression Neural Network Model for Accuracy Improvement of Global Precipitation Products: A Climate Zone-Based Local Optimization

The ability to obtain accurate precipitation data from various geographic locations is crucial for many applications. Various global products have been released in recent decades for estimating precipitation spatially and temporally. Nevertheless, it is extremely important to provide reliable and ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-05, Vol.15 (11), p.8740
Hauptverfasser: Mohammadpouri, Saeid, Sadeghnejad, Mostafa, Rezaei, Hamid, Ghanbari, Ronak, Tayebi, Safiyeh, Mohammadzadeh, Neda, Mijani, Naeim, Raeisi, Ahmad, Fathololoumi, Solmaz, Biswas, Asim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to obtain accurate precipitation data from various geographic locations is crucial for many applications. Various global products have been released in recent decades for estimating precipitation spatially and temporally. Nevertheless, it is extremely important to provide reliable and accurate products for estimating precipitation in a variety of environments. This is due to the complexity of topographic, climatic, and other factors. This study proposes a multi-product information combination for improving precipitation data accuracy based on a generalized regression neural network model using global and local optimization strategies. Firstly, the accuracy of ten global precipitation products from four different categories (satellite-based, gauge-corrected satellites, gauge-based, and reanalysis) was assessed using monthly precipitation data collected from 1896 gauge stations in Iran during 2003–2021. Secondly, to enhance the accuracy of the modeled precipitation products, the importance score of effective and auxiliary variables—such as elevation, the Enhanced Vegetation Index (EVI), the Land Surface Temperature (LST), the Soil Water Index (SWI), and interpolated precipitation maps—was assessed. Finally, a generalized regression neural network (GRNN) model with global and local optimization strategies was used to combine precipitation information from several products and auxiliary characteristics to produce precipitation data with high accuracy. Global precipitation products scored higher than interpolated precipitation products and surface characteristics. Furthermore, the importance score of the interpolated precipitation products was considerably higher than that of the surface characteristics. SWI, elevation, EVI, and LST scored 53%, 20%, 15%, and 12%, respectively, in terms of importance. The lowest RMSE values were associated with IMERGFinal, TRMM3B43, PERSIANN-CDR, ERA5, and GSMaP-Gauge. For precipitation estimation, these products had Kling–Gupta efficiency (KGE) values of 0.89, 0.86, 0.77, 0.78, and 0.60, respectively. The proposed GRNN-based precipitation product with a global (local) strategy showed RMSE and KGE values of 9.6 (8.5 mm/mo) and 0.92 (0.94), respectively, indicating higher accuracy. Generally, the accuracy of global precipitation products varies depending on climatic conditions. It was found that the proposed GRNN-derived precipitation product is more efficient under different climatic conditions than global precipitat
ISSN:2071-1050
2071-1050
DOI:10.3390/su15118740