An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications

Magnetic hyperthermia, a notable technique for tumor ministration, has opened up a novel account for biomedical research. Magnetic nanoparticles (MNPs) which are sensitive to heat liberation on exposition to the small magnetic fields are an essential obligation for this application. Exchange interac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2023-06, Vol.220 (11), p.n/a
Hauptverfasser: Tsopoe, Subenthung P., Borgohain, Chandan, Borah, Jyoti Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 220
creator Tsopoe, Subenthung P.
Borgohain, Chandan
Borah, Jyoti Prasad
description Magnetic hyperthermia, a notable technique for tumor ministration, has opened up a novel account for biomedical research. Magnetic nanoparticles (MNPs) which are sensitive to heat liberation on exposition to the small magnetic fields are an essential obligation for this application. Exchange interactivity through a bimagnetic core@shell (CS) nanostructure is one novel approach to potentially meet the desirable atmosphere for productive hyperthermia treatment. This work reports on the microstructural and magnetic property of an unusual CS arrangement with antiferromagnetic NiO (N) as the core material mounted over by a ferrimagnetic shell Fe3O4 (F) desiring to constructively tune the heating efficiency of the Fe3O4 MNPs. The magnetic investigation displays an enormous exchange interaction at the CS interface resulting in huge relocation of the hysteresis loop authenticating the exchange bias effect (EBE). The specific absorption rate (SAR) or the heat dissipation of the MNPs for bare Fe3O4 and CS NiO@Fe3O4 (N@F) are compared. The outcome genuinely results in a huge contrast, where the SAR for CS N@F is greatly intensified by over 44% compared to the bare F sample. These findings, therefore, lay out a distinctive way to ameliorate the theranostic approach by making use of the MNPs. In hyperthermia, magnetic nanoparticles are waged to defeat the cancer cells through heat dissipation via the alternating magnetic field. An inverted core@shell NiO@Fe3O4 is devised to tune the magnetic anisotropy energy and it authenticates a surge in the heating efficiency by over 44% in contrast to the single‐material Fe3O4.
doi_str_mv 10.1002/pssa.202200801
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823997289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823997289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-2c44b930db11d37b82f5f7088dfc70561139c297533de5d359402cb3d5153a283</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhisEEmNw5RyJ84aTNGtyo5qATRof0uAcpWmyZeqakrSg_Xs6hsaRky3reWz5TZJrDGMMQG6bGNWYACEAHPBJMsB8QkYTisXpsQc4Ty5i3ACkLM3wIFnnNZrXnya2bqVa52vk7c8gtKZEUx_M3XJtqgo9q9rHNnS67YJB1gd0b63TSjvfRfSkVrVpnUazXdOraxO2TqG8aaoe2a-Nl8mZVVU0V791mLw_3L9NZ6PFy-N8mi9GmuIMj4hO00JQKAuMS5oVnFhmM-C8tDoDNsGYCk1ExigtDSspEykQXdCSYUYV4XSY3Bz2NsF_dP1fcuO7UPcnJeGECpERLnpqfKB08DEGY2UT3FaFncQg92nKfZrymGYviIPw5Sqz-4eWr8tl_ud-A5BNeZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823997289</pqid></control><display><type>article</type><title>An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications</title><source>Wiley Online Library All Journals</source><creator>Tsopoe, Subenthung P. ; Borgohain, Chandan ; Borah, Jyoti Prasad</creator><creatorcontrib>Tsopoe, Subenthung P. ; Borgohain, Chandan ; Borah, Jyoti Prasad</creatorcontrib><description>Magnetic hyperthermia, a notable technique for tumor ministration, has opened up a novel account for biomedical research. Magnetic nanoparticles (MNPs) which are sensitive to heat liberation on exposition to the small magnetic fields are an essential obligation for this application. Exchange interactivity through a bimagnetic core@shell (CS) nanostructure is one novel approach to potentially meet the desirable atmosphere for productive hyperthermia treatment. This work reports on the microstructural and magnetic property of an unusual CS arrangement with antiferromagnetic NiO (N) as the core material mounted over by a ferrimagnetic shell Fe3O4 (F) desiring to constructively tune the heating efficiency of the Fe3O4 MNPs. The magnetic investigation displays an enormous exchange interaction at the CS interface resulting in huge relocation of the hysteresis loop authenticating the exchange bias effect (EBE). The specific absorption rate (SAR) or the heat dissipation of the MNPs for bare Fe3O4 and CS NiO@Fe3O4 (N@F) are compared. The outcome genuinely results in a huge contrast, where the SAR for CS N@F is greatly intensified by over 44% compared to the bare F sample. These findings, therefore, lay out a distinctive way to ameliorate the theranostic approach by making use of the MNPs. In hyperthermia, magnetic nanoparticles are waged to defeat the cancer cells through heat dissipation via the alternating magnetic field. An inverted core@shell NiO@Fe3O4 is devised to tune the magnetic anisotropy energy and it authenticates a surge in the heating efficiency by over 44% in contrast to the single‐material Fe3O4.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200801</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anisotropy energy ; Antiferromagnetism ; exchange bias effects ; Exchanging ; Fever ; Hyperthermia ; Hysteresis loops ; Iron oxides ; magnetic hyperthermia ; magnetic nanoparticles ; Magnetic properties ; Nanoparticles ; Nanostructure ; Nickel oxides ; Relocation ; specific absorption rates</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-06, Vol.220 (11), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-2c44b930db11d37b82f5f7088dfc70561139c297533de5d359402cb3d5153a283</citedby><cites>FETCH-LOGICAL-c3171-2c44b930db11d37b82f5f7088dfc70561139c297533de5d359402cb3d5153a283</cites><orcidid>0000-0003-0086-7926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200801$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200801$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Tsopoe, Subenthung P.</creatorcontrib><creatorcontrib>Borgohain, Chandan</creatorcontrib><creatorcontrib>Borah, Jyoti Prasad</creatorcontrib><title>An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications</title><title>Physica status solidi. A, Applications and materials science</title><description>Magnetic hyperthermia, a notable technique for tumor ministration, has opened up a novel account for biomedical research. Magnetic nanoparticles (MNPs) which are sensitive to heat liberation on exposition to the small magnetic fields are an essential obligation for this application. Exchange interactivity through a bimagnetic core@shell (CS) nanostructure is one novel approach to potentially meet the desirable atmosphere for productive hyperthermia treatment. This work reports on the microstructural and magnetic property of an unusual CS arrangement with antiferromagnetic NiO (N) as the core material mounted over by a ferrimagnetic shell Fe3O4 (F) desiring to constructively tune the heating efficiency of the Fe3O4 MNPs. The magnetic investigation displays an enormous exchange interaction at the CS interface resulting in huge relocation of the hysteresis loop authenticating the exchange bias effect (EBE). The specific absorption rate (SAR) or the heat dissipation of the MNPs for bare Fe3O4 and CS NiO@Fe3O4 (N@F) are compared. The outcome genuinely results in a huge contrast, where the SAR for CS N@F is greatly intensified by over 44% compared to the bare F sample. These findings, therefore, lay out a distinctive way to ameliorate the theranostic approach by making use of the MNPs. In hyperthermia, magnetic nanoparticles are waged to defeat the cancer cells through heat dissipation via the alternating magnetic field. An inverted core@shell NiO@Fe3O4 is devised to tune the magnetic anisotropy energy and it authenticates a surge in the heating efficiency by over 44% in contrast to the single‐material Fe3O4.</description><subject>anisotropy energy</subject><subject>Antiferromagnetism</subject><subject>exchange bias effects</subject><subject>Exchanging</subject><subject>Fever</subject><subject>Hyperthermia</subject><subject>Hysteresis loops</subject><subject>Iron oxides</subject><subject>magnetic hyperthermia</subject><subject>magnetic nanoparticles</subject><subject>Magnetic properties</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Relocation</subject><subject>specific absorption rates</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhisEEmNw5RyJ84aTNGtyo5qATRof0uAcpWmyZeqakrSg_Xs6hsaRky3reWz5TZJrDGMMQG6bGNWYACEAHPBJMsB8QkYTisXpsQc4Ty5i3ACkLM3wIFnnNZrXnya2bqVa52vk7c8gtKZEUx_M3XJtqgo9q9rHNnS67YJB1gd0b63TSjvfRfSkVrVpnUazXdOraxO2TqG8aaoe2a-Nl8mZVVU0V791mLw_3L9NZ6PFy-N8mi9GmuIMj4hO00JQKAuMS5oVnFhmM-C8tDoDNsGYCk1ExigtDSspEykQXdCSYUYV4XSY3Bz2NsF_dP1fcuO7UPcnJeGECpERLnpqfKB08DEGY2UT3FaFncQg92nKfZrymGYviIPw5Sqz-4eWr8tl_ud-A5BNeZY</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Tsopoe, Subenthung P.</creator><creator>Borgohain, Chandan</creator><creator>Borah, Jyoti Prasad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0086-7926</orcidid></search><sort><creationdate>202306</creationdate><title>An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications</title><author>Tsopoe, Subenthung P. ; Borgohain, Chandan ; Borah, Jyoti Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-2c44b930db11d37b82f5f7088dfc70561139c297533de5d359402cb3d5153a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anisotropy energy</topic><topic>Antiferromagnetism</topic><topic>exchange bias effects</topic><topic>Exchanging</topic><topic>Fever</topic><topic>Hyperthermia</topic><topic>Hysteresis loops</topic><topic>Iron oxides</topic><topic>magnetic hyperthermia</topic><topic>magnetic nanoparticles</topic><topic>Magnetic properties</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Relocation</topic><topic>specific absorption rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsopoe, Subenthung P.</creatorcontrib><creatorcontrib>Borgohain, Chandan</creatorcontrib><creatorcontrib>Borah, Jyoti Prasad</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsopoe, Subenthung P.</au><au>Borgohain, Chandan</au><au>Borah, Jyoti Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-06</date><risdate>2023</risdate><volume>220</volume><issue>11</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Magnetic hyperthermia, a notable technique for tumor ministration, has opened up a novel account for biomedical research. Magnetic nanoparticles (MNPs) which are sensitive to heat liberation on exposition to the small magnetic fields are an essential obligation for this application. Exchange interactivity through a bimagnetic core@shell (CS) nanostructure is one novel approach to potentially meet the desirable atmosphere for productive hyperthermia treatment. This work reports on the microstructural and magnetic property of an unusual CS arrangement with antiferromagnetic NiO (N) as the core material mounted over by a ferrimagnetic shell Fe3O4 (F) desiring to constructively tune the heating efficiency of the Fe3O4 MNPs. The magnetic investigation displays an enormous exchange interaction at the CS interface resulting in huge relocation of the hysteresis loop authenticating the exchange bias effect (EBE). The specific absorption rate (SAR) or the heat dissipation of the MNPs for bare Fe3O4 and CS NiO@Fe3O4 (N@F) are compared. The outcome genuinely results in a huge contrast, where the SAR for CS N@F is greatly intensified by over 44% compared to the bare F sample. These findings, therefore, lay out a distinctive way to ameliorate the theranostic approach by making use of the MNPs. In hyperthermia, magnetic nanoparticles are waged to defeat the cancer cells through heat dissipation via the alternating magnetic field. An inverted core@shell NiO@Fe3O4 is devised to tune the magnetic anisotropy energy and it authenticates a surge in the heating efficiency by over 44% in contrast to the single‐material Fe3O4.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200801</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0086-7926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2023-06, Vol.220 (11), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2823997289
source Wiley Online Library All Journals
subjects anisotropy energy
Antiferromagnetism
exchange bias effects
Exchanging
Fever
Hyperthermia
Hysteresis loops
Iron oxides
magnetic hyperthermia
magnetic nanoparticles
Magnetic properties
Nanoparticles
Nanostructure
Nickel oxides
Relocation
specific absorption rates
title An Investigation of Inverted Core@Shell Nanostructure for Efficacious Magnetic Hyperthermia Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Investigation%20of%20Inverted%20Core@Shell%20Nanostructure%20for%20Efficacious%20Magnetic%20Hyperthermia%20Applications&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Tsopoe,%20Subenthung%20P.&rft.date=2023-06&rft.volume=220&rft.issue=11&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200801&rft_dat=%3Cproquest_cross%3E2823997289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823997289&rft_id=info:pmid/&rfr_iscdi=true