Molecular Characterization and Quantification of Saponins from Sugar Beet (Beta vulgaris ssp. vulgaris var. altissima)

Consumer demand for sustainably and ecologically produced food has grown in recent years. However, for numerous reasons, this demand has not always been met. New solutions are still being sought, particularly in the area of emulsifiers, an integral ingredient of many food products. The biggest chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lebensmittelchemie 2023-06, Vol.77 (S2), p.S2-092-S2-092
Hauptverfasser: Edelmann, Matthias, Hofmann, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consumer demand for sustainably and ecologically produced food has grown in recent years. However, for numerous reasons, this demand has not always been met. New solutions are still being sought, particularly in the area of emulsifiers, an integral ingredient of many food products. The biggest challenge is the limited scope of application offered by current alternatives. While some progress has been made using foam active quillaja saponins, they are neither pleasant‐tasting nor sustainably produced. Only very little is known about other alternatives, and especially the behavior of saponins, particularly on a molecular level, is not very well understood. Moreover, it is often not known which parts of a plant contain the highest levels of saponins and are therefore most suitable for extraction. To expand the current level of knowledge about emulsifying and foam active extracts, saponin extracts were made from oat bran, beetroot as well as sugar beet and characterized in close cooperation with the Department of Food Physics and Meat Science at the University of Hohenheim. Measurements conducted on these extracts showed that foam activity is a good indicator of their emulsifying ability. The most promising one ‐ sugar beet extract ‐ was examined in more detail using taste dilution analysis, which revealed saponin fractions with a slight off‐taste and high foam activity. A series of eight saponins was obtained from these fractions and further characterized, together with three commercially available ones that were identified using non‐targeted screening. The unequivocal identification and structure elucidation was performed using a combination of liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and both one‐dimensional (1D) and two‐dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. For most substances, this was the first time that a complete assignment of 1H and 13C NMR signals had been made. All of these saponins possess taste recognition values above 1000 μmol/L, which is higher than most values for the taste‐ active saponins reported in the literature. The foam activity of these substances was measured using a self‐developed small‐scale foam activity assay. It was measured for different concentrations of saponins in a buffer solution. The foam activity of numerous other saponins was also determined, resulting in the most comprehensive overview of the foam activities of individual saponins. In addition to these isolation and characteriza
ISSN:0937-1478
1521-3811
DOI:10.1002/lemi.202352239