A 3D‐Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature

The sluggish ionic transport in thick electrodes and freezing electrolytes has limited electrochemical energy storage devices in lots of harsh environments for practical applications. Here, a 3D‐printed proton pseudocapacitor based on high‐mass‐loading 3D‐printed WO3 anodes, Prussian blue analog cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-06, Vol.35 (23), p.e2209963-n/a
Hauptverfasser: Zhang, Miaoran, Xu, Tiezhu, Wang, Di, Yao, Tengyu, Xu, Zhenming, Liu, Qingsheng, Shen, Laifa, Yu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sluggish ionic transport in thick electrodes and freezing electrolytes has limited electrochemical energy storage devices in lots of harsh environments for practical applications. Here, a 3D‐printed proton pseudocapacitor based on high‐mass‐loading 3D‐printed WO3 anodes, Prussian blue analog cathodes, and anti‐freezing electrolytes is developed, which can achieve state‐of‐the‐art electrochemical performance at low temperatures. Benefiting from the cross‐scale 3D electrode structure using a 3D printing direct ink writing technique, the 3D‐printed cathode realizes an ultrahigh areal capacitance of 7.39 F cm−2 at a high areal mass loading of 23.51 mg cm−2. Moreover, the 3D‐printed pseudocapacitor delivers an areal capacitance of 3.44 F cm−2 and excellent areal energy density (1.08 mWh cm−2). Owing to the fast ion kinetics in 3D electrodes and the high ionic conductivity of the hybrid electrolyte, the 3D‐printed supercapacitor delivers 61.3% of the room‐temperature capacitance even at −60 °C. This work provides an effective strategy for the practical applications of energy storage devices with complex physical structure at extreme temperatures. 3D‐architectured high‐mass‐loading proton pseudocapacitors with cross‐scale, high energy density, and oriented toward harsh environments are rationally designed via 3D printing technology. The 3D‐printed pseudocapacitors can deliver a high energy density of 0.514 mWh cm−2 and excellent cycling stability at the ultralow temperature of −60°C.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202209963