Atmospheric Scattering Model Induced Statistical Characteristics Estimation for Underwater Image Restoration
Underwater images often suffer from color deviation and low contrast due to selective absorption and light scattering, whose degradation is generally described by an Atmospheric Scattering Model (ASM). However, it is challenging to design hand-craft priors to estimate the transmission map and global...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2023-01, Vol.30, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Underwater images often suffer from color deviation and low contrast due to selective absorption and light scattering, whose degradation is generally described by an Atmospheric Scattering Model (ASM). However, it is challenging to design hand-craft priors to estimate the transmission map and global light within ASM. To avoid the estimation on these two variables, in this paper, we establish a statistical characteristics relationship between underwater and recovered images based on ASM. With this relationship, a novel lightweight model is proposed for efficient Underwater Image Restoration (UIR). Within our proposed model, the UIR problem is disentangled into global restoration and local compensation, for which two modules are developed. Extensive experimental results demonstrate that our proposed method can effectively improve color deviation and low contrast while preserving details, and outperform state-of-the-art methods. Our codes are available at https://github.com/charliewalker322/SCEIR-pytorch |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2023.3281255 |