Fisher's Linear Discriminant Analysis With Space-Folding Operations

Fisher's linear discriminant analysis (LDA) is an easy-to-use supervised dimensionality reduction method. However, LDA may be ineffective against complicated class distributions. It is well-known that deep feedforward neural networks with rectified linear units as activation functions can map m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-07, Vol.45 (7), p.1-8
1. Verfasser: Chang, Chin-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fisher's linear discriminant analysis (LDA) is an easy-to-use supervised dimensionality reduction method. However, LDA may be ineffective against complicated class distributions. It is well-known that deep feedforward neural networks with rectified linear units as activation functions can map many input neighborhoods to similar outputs by a succession of space-folding operations. This short paper shows that the space-folding operation can reveal to LDA classification information in the subspace where LDA cannot find any. A composition of LDA with the space-folding operation can find classification information more than LDA can do. End-to-end fine-tuning can improve that composition further. Experimental results on artificial and open data sets have shown the feasibility of the proposed approach.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3233572