Matrix Schubert varieties, binomial ideals, and reduced Gröbner bases

We prove a sharp lower bound on the number of terms in an element of the reduced Gr\"obner basis of a Schubert determinantal ideal \(I_w\) under the term order of [Knutson-Miller '05]. We give three applications. First, we give a pattern-avoidance characterization of the matrix Schubert va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
1. Verfasser: Stelzer, Ada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a sharp lower bound on the number of terms in an element of the reduced Gr\"obner basis of a Schubert determinantal ideal \(I_w\) under the term order of [Knutson-Miller '05]. We give three applications. First, we give a pattern-avoidance characterization of the matrix Schubert varieties whose defining ideals are binomial. This complements a result of [Escobar-Mészáros '16] on matrix Schubert varieties that are toric with respect to their natural torus action. Second, we give a combinatorial proof that the recent formulas of [Rajchgot-Robichaux-Weigandt '23] and [Almousa-Dochtermann-Smith '22] computing the Castelnuovo-Mumford regularity of vexillary \(I_w\) and toric edge ideals of bipartite graphs respectively agree for binomial \(I_w\). Third, we demonstrate that the Gr\"obner basis for \(I_w\) given by minimal generators [Gao-Yong '22] is reduced if and only if the defining permutation \(w\) is vexillary.
ISSN:2331-8422