Complete intersections of cubic and quadric hypersurfaces over \(\mathbb{F}_q(t)\)
Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least \(23\) over \(\mathbb{F}_q(t)\), provided \(\text{cha}(\mathbb{F...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least \(23\) over \(\mathbb{F}_q(t)\), provided \(\text{cha}(\mathbb{F}_q)>3\). Under the same hypotheses, we also verify weak approximation. |
---|---|
ISSN: | 2331-8422 |