Complete intersections of cubic and quadric hypersurfaces over \(\mathbb{F}_q(t)\)

Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least \(23\) over \(\mathbb{F}_q(t)\), provided \(\text{cha}(\mathbb{F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
1. Verfasser: Glas, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least \(23\) over \(\mathbb{F}_q(t)\), provided \(\text{cha}(\mathbb{F}_q)>3\). Under the same hypotheses, we also verify weak approximation.
ISSN:2331-8422