Highly coherent phase-lock of an 8.1 μm quantum cascade laser to a turn-key mid-IR frequency comb

A continuous-wave Fabry–Pérot quantum cascade laser (QCL) emitting at 8.1 μm operating in the single mode regime has been coherently phase locked to a turn-key low-noise commercial mid-Infrared (mid-IR) optical frequency comb. The stability of the comb used as a reference is transferred to the QCL r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-06, Vol.122 (23)
Hauptverfasser: Chomet, B., Gacemi, D., Lopez, O., Del Balzo, L., Vasanelli, A., Todorov, Y., Darquié, B., Sirtori, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A continuous-wave Fabry–Pérot quantum cascade laser (QCL) emitting at 8.1 μm operating in the single mode regime has been coherently phase locked to a turn-key low-noise commercial mid-Infrared (mid-IR) optical frequency comb. The stability of the comb used as a reference is transferred to the QCL resulting in an integrated residual phase error of 0.4 rad. The laser linewidth is narrowed by more than two orders of magnitude reaching sub-kHz level at 1 ms observation time, limited by the spectral purity of the mid-IR comb. Our experiment is an important step toward the development of both powerful and metrology-grade QCLs and fully stabilized QCL frequency comb and opens perspectives for precision measurements and frequency metrology in the mid-IR.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0152013