A bound on the dissociation number
The dissociation number diss ( G ) $\text{diss}(G)$ of a graph G $G$ is the maximum order of a set of vertices of G $G$ inducing a subgraph that is of maximum degree at most 1. Computing the dissociation number of a given graph is algorithmically hard even when restricted to subcubic bipartite graph...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-08, Vol.103 (4), p.661-673 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dissociation number
diss
(
G
) $\text{diss}(G)$ of a graph
G $G$ is the maximum order of a set of vertices of
G $G$ inducing a subgraph that is of maximum degree at most 1. Computing the dissociation number of a given graph is algorithmically hard even when restricted to subcubic bipartite graphs. For a graph
G $G$ with
n $n$ vertices,
m $m$ edges,
k $k$ components, and
c
1 ${c}_{1}$ induced cycles of length 1 modulo 3, we show
diss
(
G
)
≥
n
−
1
3
(
m
+
k
+
c
1
) $\text{diss}(G)\ge n-\frac{1}{3}(m+k+{c}_{1})$. Furthermore, we characterize the extremal graphs in which every two cycles are vertex‐disjoint. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22940 |