Magic partially filled arrays on abelian groups
In this paper we introduce a special class of partially filled arrays. A magic partially filled array MPFΩ(m,n;s,k) ${\text{MPF}}_{{\rm{\Omega }}}(m,n;s,k)$ on a subset Ω ${\rm{\Omega }}$ of an abelian group (Γ,+) $({\rm{\Gamma }},+)$ is a partially filled array of size m×n $m\times n$ with entries...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2023-08, Vol.31 (8), p.347-367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a special class of partially filled arrays. A magic partially filled array MPFΩ(m,n;s,k) ${\text{MPF}}_{{\rm{\Omega }}}(m,n;s,k)$ on a subset Ω ${\rm{\Omega }}$ of an abelian group (Γ,+) $({\rm{\Gamma }},+)$ is a partially filled array of size m×n $m\times n$ with entries in Ω ${\rm{\Omega }}$ such that (i) every ω∈Ω $\omega \in {\rm{\Omega }}$ appears once in the array; (ii) each row contains s $s$ filled cells and each column contains k $k$ filled cells; (iii) there exist (not necessarily distinct) elements x,y∈Γ $x,y\in {\rm{\Gamma }}$ such that the sum of the elements in each row is x $x$ and the sum of the elements in each column is y $y$. In particular, if x=y=0Γ $x=y={0}_{{\rm{\Gamma }}}$, we have a zero‐sum magic partially filled array MPFΩ0(m,n;s,k) ^{0}\text{MPF}_{{\rm{\Omega }}}(m,n;s,k)$. Examples of these objects are magic rectangles, Γ ${\rm{\Gamma }}$‐magic rectangles, signed magic arrays, (integer or noninteger) Heffter arrays. Here, we give necessary and sufficient conditions for the existence of a magic rectangle with empty cells, that is, of an MPFΩ(m,n;s,k) ${\text{MPF}}_{{\rm{\Omega }}}(m,n;s,k)$ where Ω={1,2,…,nk}⊂ℤ ${\rm{\Omega }}=\{1,2,\ldots ,nk\}\subset {\rm{{\mathbb{Z}}}$. We also construct zero‐sum magic partially filled arrays when Ω ${\rm{\Omega }}$ is the abelian group Γ ${\rm{\Gamma }}$ or the set of its nonzero elements. |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.21886 |