An uncountable Furstenberg–Zimmer structure theory

Furstenberg–Zimmer structure theory refers to the extension of the dichotomy between the compact and weakly mixing parts of a measure-preserving dynamical system and the algebraic and geometric descriptions of such parts to a conditional setting, where such dichotomy is established relative to a fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2023-07, Vol.43 (7), p.2404-2436
1. Verfasser: JAMNESHAN, ASGAR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Furstenberg–Zimmer structure theory refers to the extension of the dichotomy between the compact and weakly mixing parts of a measure-preserving dynamical system and the algebraic and geometric descriptions of such parts to a conditional setting, where such dichotomy is established relative to a factor and conditional analogs of those algebraic and geometric descriptions are sought. Although the unconditional dichotomy and the characterizations are known for arbitrary systems, the relative situation is understood under certain countability and separability hypotheses on the underlying groups and spaces. The aim of this article is to remove these restrictions in the relative situation and establish a Furstenberg–Zimmer structure theory in full generality. As an independent byproduct, we establish a connection between the relative analysis of systems in ergodic theory and the internal logic in certain Boolean topoi.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2022.43