Breakage probability of feed pellet under repeated compression and impacts
It is a common phenomenon that feed pellet is broken by compression and impact during the processing of manufacturing and production. At present, the breakage characteristics of feed pellet under repeated loading are not clear. In order to predict the breakage probability of feed pellet accurately,...
Gespeichert in:
Veröffentlicht in: | Granular matter 2023-08, Vol.25 (3), p.47, Article 47 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a common phenomenon that feed pellet is broken by compression and impact during the processing of manufacturing and production. At present, the breakage characteristics of feed pellet under repeated loading are not clear. In order to predict the breakage probability of feed pellet accurately, the compound feed for piglets feeding was selected to conduct repeated compression and repeated impacts tests in this paper. Firstly, the quasi-static repeated compression tests were conducted, and it was found that the cyclic stiffening occurred due to the densification of feed pellet during the repeated compression. Secondly, the quasi-static repeated compression tests in radial and axial direction were performed under different loading forces. And the results showed that the compressive energy required for feed pellet breakage increased with the decrease of loading force. Then, two-parameter Weibull function was used to fit the relationship between mass-specific compressive energy and breakage probability. And the fitting results R
2
were all greater than 0.9 and the fitting effect was good. Finally, dynamic repeated impacts tests with different impact velocities were conducted. The results showed that the impact times required for feed pellet to reach the same breakage probability decreased, with the increase of impact velocity. Three-parameter Weibull function was used to fit the relationship between mass-specific impact energy and breakage probability. Good fitting effect was obtained and R
2
was greater than 0.95. The fitting results can predict the breakage probability of feed pellet in the process of repeated loading, and provide guidance for the feed pellet production and transportation.
Graphical abstract
The breakage characteristics of feed pellet under reteated loading |
---|---|
ISSN: | 1434-5021 1434-7636 |
DOI: | 10.1007/s10035-023-01343-w |