Root Mean Square Error Estimates for the Projection-Difference Method for the Approximate Solution of a Parabolic Equation with a Periodic Condition for the Solution
Using the projection-difference method, we construct an approximate solution of an abstract linear parabolic equation in a separable Hilbert space with a periodic condition for a solution. We use the Galerkin method for the spatial variables and the implicit Euler discretization for time. We obtain...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-06, Vol.272 (6), p.866-871 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the projection-difference method, we construct an approximate solution of an abstract linear parabolic equation in a separable Hilbert space with a periodic condition for a solution. We use the Galerkin method for the spatial variables and the implicit Euler discretization for time. We obtain root mean square estimates of the error of approximate solutions that are effective both in time and spatial variables; these estimates imply the convergence of approximate solutions to an exact solution and allow one to find the convergence rate. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-023-06478-y |