On the Shortest Lattice Vector vs. the Shortest Basis

Given an arbitrary basis for a mathematical lattice, to find a ``good" basis for it is one of the classic and important algorithmic problems. In this note, we give a new and simpler proof of a theorem by Regavim (arXiv:2106.03183): we construct a 18-dimensional lattice that does not have a basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Eisenberg, Yael, Rot, Itamar, Safra, Muli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an arbitrary basis for a mathematical lattice, to find a ``good" basis for it is one of the classic and important algorithmic problems. In this note, we give a new and simpler proof of a theorem by Regavim (arXiv:2106.03183): we construct a 18-dimensional lattice that does not have a basis that satisfies the following two properties simultaneously: 1. The basis includes the shortest non-zero lattice vector. 2. The basis is shortest, that is, minimizes the longest basis vector (alternatively: the sum or the sum-of-squares of the basis vectors). The vectors' length can be measured in any \(\ell^q\) norm, for \(q\in \mathbb{N}_+\) (albeit, via another lattice, of a somewhat larger dimension).
ISSN:2331-8422