Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction
Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-06, Vol.24 (6), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Varga, Balazs Pereira, Mike Kulcsar, Balazs Pariota, Luigi Peni, Tamas |
description | Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes. |
doi_str_mv | 10.1109/TITS.2023.3251022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2821070730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10070380</ieee_id><sourcerecordid>2821070730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-7597d7164906b3ad5b9c985b4b65bff4504c83fa790402d913de150fd84cb8d53</originalsourceid><addsrcrecordid>eNpNkVtrFEEQRgcxYIz5AYIPAz7PWn2b6X6UrJdgxJCdPDd9qc52yM6s1b2K_95ZNohPVRRfnaI4TfOWwYoxMB_G63Gz4sDFSnDFgPMXzTlTSncArH957LnsDCh41bwu5XGZSsXYeXO3dtV1a8q_cGrXuVQ3BWy_Y6UcSptmar9RfsjTQ7fZzlS7EWnX3pN3UzuSSymHdlNdxfaWMOZQ8zy9ac6Seyp4-VwvmvvPn8arr93Njy_XVx9vuiAGqN2gzBAH1ksDvRcuKm-C0cpL3yufklQggxbJDQYk8GiYiMgUpKhl8DoqcdFsTtzyG_cHb_eUd47-2NllS1jQUdjasHVPO6RiC9ponGRSokUfk5VOGuuZ1DbqXg3Jxx6SWajvT9Q9zT8PWKp9nA80LY9YrjmDAQYBS4qdUoHmUgjTv-sM7FGIPQqxRyH2Wciy8-60kxHxv_yCFBrEX9wwhpI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821070730</pqid></control><display><type>article</type><title>Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Varga, Balazs ; Pereira, Mike ; Kulcsar, Balazs ; Pariota, Luigi ; Peni, Tamas</creator><creatorcontrib>Varga, Balazs ; Pereira, Mike ; Kulcsar, Balazs ; Pariota, Luigi ; Peni, Tamas</creatorcontrib><description>Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes.</description><identifier>ISSN: 1524-9050</identifier><identifier>ISSN: 1558-0016</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3251022</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Correlation ; Deep learning ; Detectors ; Distance metric ; Flow distribution ; Hyperspaces ; Kernel ; Kriging ; Measurement ; Neural networks ; Prediction algorithms ; Spatio-temporal prediction ; Traffic flow ; Traffic flow prediction ; Traffic volume</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-7597d7164906b3ad5b9c985b4b65bff4504c83fa790402d913de150fd84cb8d53</citedby><cites>FETCH-LOGICAL-c370t-7597d7164906b3ad5b9c985b4b65bff4504c83fa790402d913de150fd84cb8d53</cites><orcidid>0000-0002-3688-1108 ; 0000-0002-7899-2690 ; 0000-0002-1440-4263 ; 0000-0002-2945-7974 ; 0000-0001-9173-666X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10070380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10070380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/535393$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Varga, Balazs</creatorcontrib><creatorcontrib>Pereira, Mike</creatorcontrib><creatorcontrib>Kulcsar, Balazs</creatorcontrib><creatorcontrib>Pariota, Luigi</creatorcontrib><creatorcontrib>Peni, Tamas</creatorcontrib><title>Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Distance metric</subject><subject>Flow distribution</subject><subject>Hyperspaces</subject><subject>Kernel</subject><subject>Kriging</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Spatio-temporal prediction</subject><subject>Traffic flow</subject><subject>Traffic flow prediction</subject><subject>Traffic volume</subject><issn>1524-9050</issn><issn>1558-0016</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkVtrFEEQRgcxYIz5AYIPAz7PWn2b6X6UrJdgxJCdPDd9qc52yM6s1b2K_95ZNohPVRRfnaI4TfOWwYoxMB_G63Gz4sDFSnDFgPMXzTlTSncArH957LnsDCh41bwu5XGZSsXYeXO3dtV1a8q_cGrXuVQ3BWy_Y6UcSptmar9RfsjTQ7fZzlS7EWnX3pN3UzuSSymHdlNdxfaWMOZQ8zy9ac6Seyp4-VwvmvvPn8arr93Njy_XVx9vuiAGqN2gzBAH1ksDvRcuKm-C0cpL3yufklQggxbJDQYk8GiYiMgUpKhl8DoqcdFsTtzyG_cHb_eUd47-2NllS1jQUdjasHVPO6RiC9ponGRSokUfk5VOGuuZ1DbqXg3Jxx6SWajvT9Q9zT8PWKp9nA80LY9YrjmDAQYBS4qdUoHmUgjTv-sM7FGIPQqxRyH2Wciy8-60kxHxv_yCFBrEX9wwhpI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Varga, Balazs</creator><creator>Pereira, Mike</creator><creator>Kulcsar, Balazs</creator><creator>Pariota, Luigi</creator><creator>Peni, Tamas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-3688-1108</orcidid><orcidid>https://orcid.org/0000-0002-7899-2690</orcidid><orcidid>https://orcid.org/0000-0002-1440-4263</orcidid><orcidid>https://orcid.org/0000-0002-2945-7974</orcidid><orcidid>https://orcid.org/0000-0001-9173-666X</orcidid></search><sort><creationdate>20230601</creationdate><title>Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction</title><author>Varga, Balazs ; Pereira, Mike ; Kulcsar, Balazs ; Pariota, Luigi ; Peni, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-7597d7164906b3ad5b9c985b4b65bff4504c83fa790402d913de150fd84cb8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Distance metric</topic><topic>Flow distribution</topic><topic>Hyperspaces</topic><topic>Kernel</topic><topic>Kriging</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Spatio-temporal prediction</topic><topic>Traffic flow</topic><topic>Traffic flow prediction</topic><topic>Traffic volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varga, Balazs</creatorcontrib><creatorcontrib>Pereira, Mike</creatorcontrib><creatorcontrib>Kulcsar, Balazs</creatorcontrib><creatorcontrib>Pariota, Luigi</creatorcontrib><creatorcontrib>Peni, Tamas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varga, Balazs</au><au>Pereira, Mike</au><au>Kulcsar, Balazs</au><au>Pariota, Luigi</au><au>Peni, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1524-9050</issn><issn>1558-0016</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3251022</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3688-1108</orcidid><orcidid>https://orcid.org/0000-0002-7899-2690</orcidid><orcidid>https://orcid.org/0000-0002-1440-4263</orcidid><orcidid>https://orcid.org/0000-0002-2945-7974</orcidid><orcidid>https://orcid.org/0000-0001-9173-666X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-12 |
issn | 1524-9050 1558-0016 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2821070730 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Correlation Deep learning Detectors Distance metric Flow distribution Hyperspaces Kernel Kriging Measurement Neural networks Prediction algorithms Spatio-temporal prediction Traffic flow Traffic flow prediction Traffic volume |
title | Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Distance%20Metrics%20for%20Kriging-Short-Term%20Urban%20Traffic%20State%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Varga,%20Balazs&rft.date=2023-06-01&rft.volume=24&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3251022&rft_dat=%3Cproquest_RIE%3E2821070730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821070730&rft_id=info:pmid/&rft_ieee_id=10070380&rfr_iscdi=true |