Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction
Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-06, Vol.24 (6), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes. |
---|---|
ISSN: | 1524-9050 1558-0016 1558-0016 |
DOI: | 10.1109/TITS.2023.3251022 |