Atmospheric Deposition of Macronutrients (Dissolved Inorganic Nitrogen and Phosphorous) onto the Black Sea and Implications on Marine Productivity

Two-sized aerosol samples were obtained from a rural site located close to Sinop on the south coastline of the Black Sea. In addition, bulk deposition samples were collected at Varna, located on the west coastline of the Black Sea. Both aerosol and deposition samples were analyzed for the main macro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2016-04, Vol.73 (4), p.1727-1739
Hauptverfasser: Koçak, M., Mihalopoulos, N., Tutsak, E., Violaki, K., Theodosi, C., Zarmpas, P., Kalegeri, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-sized aerosol samples were obtained from a rural site located close to Sinop on the south coastline of the Black Sea. In addition, bulk deposition samples were collected at Varna, located on the west coastline of the Black Sea. Both aerosol and deposition samples were analyzed for the main macronutrients, NO3−, NH4+, and PO43−. The mean aerosol nitrate and ammonium concentrations were 7.1 ± 5.5 and 22.8 ± 17.8 nmol m−3, respectively. The mean aerosol phosphate concentration was 0.69 ± 0.31 nmol m−3, ranging from 0.21 to 2.36 nmol m−3. Interestingly, phosphate concentration over Sinop was substantially higher than those of most Mediterranean sites. Comparison of the atmospheric and riverine inputs for the Black Sea revealed that atmospheric dissolved inorganic nitrogen (DIN) only ranged between 4% and 13%, while the atmospheric dissolved inorganic phosphorus (DIP) fluxes had significantly higher contributions with values ranging from 12% to 37%. The molar N:P ratios in atmospheric deposition for Sinop and Varna were 13 and 14, respectively, both of which were lower than the Redfield ratio (16). The atmospheric molar N:P ratios over the Black Sea were considerably lower than those reported for riverine fluxes (41) and the Mediterranean region (more than 200). The atmospheric P flux can sustain 0.5%–5.2% of the primary production, whereas the N flux can sustain 0.4%–4.8% of the primary production. The contribution of the atmospheric flux may enhance by 2.6 when the new production is considered.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-15-0039.1