Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
This paper proposes an extension of the Bayesian instrumental variables regression which allows spatial and temporal correlation among observations. For that, we introduce a double separable covariance matrix, adopting a Conditional Autoregressive structure for the spatial component, and a first-ord...
Gespeichert in:
Veröffentlicht in: | Computational economics 2023-06, Vol.62 (1), p.29-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an extension of the Bayesian instrumental variables regression which allows spatial and temporal correlation among observations. For that, we introduce a double separable covariance matrix, adopting a Conditional Autoregressive structure for the spatial component, and a first-order autoregressive process for the temporal component. We also introduce a Bayesian multiple imputation to handle missing data considering uncertainty. The inference procedure is described joint with a step by step Monte Carlo Markov Chain algorithm for parameters estimation. We illustrate our methodology through a simulation study and a real application that investigates how broadband affects the Gross Domestic Product of municipalities in the state of Mato Grosso do Sul from 2010 to 2017. |
---|---|
ISSN: | 0927-7099 1572-9974 |
DOI: | 10.1007/s10614-022-10269-z |