Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach

This paper proposes an extension of the Bayesian instrumental variables regression which allows spatial and temporal correlation among observations. For that, we introduce a double separable covariance matrix, adopting a Conditional Autoregressive structure for the spatial component, and a first-ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2023-06, Vol.62 (1), p.29-47
Hauptverfasser: Nascimento, Marcus L., Gonçalves, Kelly C. M., Mendonça, Mario Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an extension of the Bayesian instrumental variables regression which allows spatial and temporal correlation among observations. For that, we introduce a double separable covariance matrix, adopting a Conditional Autoregressive structure for the spatial component, and a first-order autoregressive process for the temporal component. We also introduce a Bayesian multiple imputation to handle missing data considering uncertainty. The inference procedure is described joint with a step by step Monte Carlo Markov Chain algorithm for parameters estimation. We illustrate our methodology through a simulation study and a real application that investigates how broadband affects the Gross Domestic Product of municipalities in the state of Mato Grosso do Sul from 2010 to 2017.
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-022-10269-z