Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning
With the increase in cyber threats in recent years, there have been more forms of demand for network security protection measures. Network traffic classification technology is used to adapt to the dynamic threat environment. However, network traffic has a natural unbalanced class distribution proble...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2023, Vol.2023, p.1-16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increase in cyber threats in recent years, there have been more forms of demand for network security protection measures. Network traffic classification technology is used to adapt to the dynamic threat environment. However, network traffic has a natural unbalanced class distribution problem, and the single model leads to the low accuracy and high false-positive rate of the traditional detection model. Given the above two problems, this paper proposes a new dataset balancing method named SD sampling based on the SMOTE algorithm. Different from the SMOTE algorithm, this method divides the sample into two types that are easy and difficult to classify and only balances the difficult-to-classify sample, which not only overcomes the SMOTE’s overgeneralization but also combines the idea of oversampling and undersampling. In addition, a two-layer structure combined with XGBoost and the random forest is proposed for multiclassification of anomalous traffic, since using a hierarchical structure can better classify minority abnormal traffic. This paper conducts experiments on the CICIDS2017 dataset. The results show that the classification accuracy of the proposed model is more than 99.70% and that the false-positive rate is less than 0.34%, indicating that the proposed model is better than traditional models. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2023/4374385 |