Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere

In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2023-06, Vol.197 (3), p.966-992
Hauptverfasser: Darbha, Swaroop, Pavan, Athindra, Kumbakonam, Rajagopal, Rathinam, Sivakumar, Casbeer, David W., Manyam, Satyanarayana G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 3
container_start_page 966
container_title Journal of optimization theory and applications
container_volume 197
creator Darbha, Swaroop
Pavan, Athindra
Kumbakonam, Rajagopal
Rathinam, Sivakumar
Casbeer, David W.
Manyam, Satyanarayana G.
description In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius r < 1 , where r depends on the bound, U max . We show in this article that if 0 < r ≤ 1 2 , the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if C is the smaller circular arc and G is the great circular arc, then the optimal path can only be CCC ,  CGC ,  CC ,  CG ,  GC ,  C or G . If r > 1 2 , while paths of the above type may cease to exist depending on the boundary conditions and the value of r , optimal paths may be concatenations of more than three circular arcs.
doi_str_mv 10.1007/s10957-023-02206-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2819764475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819764475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-34cd21881b69b1a4df5256a147f8c7c0c6ea718c17898e5c721f76c13a8910963</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA62hu0uZnqVVHYWAEdR3SNHU6jG1NWsGdr-Hr-SRGK7hzcblwOedczofQMdBToFSeRaA6l4QynoZRQfgOmkEuOWFKql00o-lMOON6Hx3EuKGUaiWzGbpY9UPzbLd44bvKx8bhYgyvdhiDx0XXxiHYpvUVvhzLpo2f7x_4zg7riLsWW3zfr33wh2ivttvoj373HD1eXz0UN2S5WtwW50vimKQD4ZmrGCgFpdAl2Kyqc5YLC5mslZOOOuGtBOVAKq187iSDWgoH3Cqd2gk-RydTbh-6l9HHwWy6MbTppWEKtBRZJvOkYpPKhS7G4GvTh1QwvBmg5puVmViZxMr8sDI8mfhkikncPvnwF_2P6wvTm2tq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819764475</pqid></control><display><type>article</type><title>Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere</title><source>SpringerLink Journals - AutoHoldings</source><creator>Darbha, Swaroop ; Pavan, Athindra ; Kumbakonam, Rajagopal ; Rathinam, Sivakumar ; Casbeer, David W. ; Manyam, Satyanarayana G.</creator><creatorcontrib>Darbha, Swaroop ; Pavan, Athindra ; Kumbakonam, Rajagopal ; Rathinam, Sivakumar ; Casbeer, David W. ; Manyam, Satyanarayana G.</creatorcontrib><description>In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius r &lt; 1 , where r depends on the bound, U max . We show in this article that if 0 &lt; r ≤ 1 2 , the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if C is the smaller circular arc and G is the great circular arc, then the optimal path can only be CCC ,  CGC ,  CC ,  CG ,  GC ,  C or G . If r &gt; 1 2 , while paths of the above type may cease to exist depending on the boundary conditions and the value of r , optimal paths may be concatenations of more than three circular arcs.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-023-02206-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Curvature ; Engineering ; Mathematics ; Mathematics and Statistics ; Motion planning ; Operations Research/Decision Theory ; Optimization ; Rigid structures ; Robots ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2023-06, Vol.197 (3), p.966-992</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-34cd21881b69b1a4df5256a147f8c7c0c6ea718c17898e5c721f76c13a8910963</cites><orcidid>0000-0002-0881-5672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-023-02206-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-023-02206-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Darbha, Swaroop</creatorcontrib><creatorcontrib>Pavan, Athindra</creatorcontrib><creatorcontrib>Kumbakonam, Rajagopal</creatorcontrib><creatorcontrib>Rathinam, Sivakumar</creatorcontrib><creatorcontrib>Casbeer, David W.</creatorcontrib><creatorcontrib>Manyam, Satyanarayana G.</creatorcontrib><title>Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius r &lt; 1 , where r depends on the bound, U max . We show in this article that if 0 &lt; r ≤ 1 2 , the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if C is the smaller circular arc and G is the great circular arc, then the optimal path can only be CCC ,  CGC ,  CC ,  CG ,  GC ,  C or G . If r &gt; 1 2 , while paths of the above type may cease to exist depending on the boundary conditions and the value of r , optimal paths may be concatenations of more than three circular arcs.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Curvature</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Motion planning</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Rigid structures</subject><subject>Robots</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuA62hu0uZnqVVHYWAEdR3SNHU6jG1NWsGdr-Hr-SRGK7hzcblwOedczofQMdBToFSeRaA6l4QynoZRQfgOmkEuOWFKql00o-lMOON6Hx3EuKGUaiWzGbpY9UPzbLd44bvKx8bhYgyvdhiDx0XXxiHYpvUVvhzLpo2f7x_4zg7riLsWW3zfr33wh2ivttvoj373HD1eXz0UN2S5WtwW50vimKQD4ZmrGCgFpdAl2Kyqc5YLC5mslZOOOuGtBOVAKq187iSDWgoH3Cqd2gk-RydTbh-6l9HHwWy6MbTppWEKtBRZJvOkYpPKhS7G4GvTh1QwvBmg5puVmViZxMr8sDI8mfhkikncPvnwF_2P6wvTm2tq</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Darbha, Swaroop</creator><creator>Pavan, Athindra</creator><creator>Kumbakonam, Rajagopal</creator><creator>Rathinam, Sivakumar</creator><creator>Casbeer, David W.</creator><creator>Manyam, Satyanarayana G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0881-5672</orcidid></search><sort><creationdate>20230601</creationdate><title>Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere</title><author>Darbha, Swaroop ; Pavan, Athindra ; Kumbakonam, Rajagopal ; Rathinam, Sivakumar ; Casbeer, David W. ; Manyam, Satyanarayana G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-34cd21881b69b1a4df5256a147f8c7c0c6ea718c17898e5c721f76c13a8910963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Curvature</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Motion planning</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Rigid structures</topic><topic>Robots</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbha, Swaroop</creatorcontrib><creatorcontrib>Pavan, Athindra</creatorcontrib><creatorcontrib>Kumbakonam, Rajagopal</creatorcontrib><creatorcontrib>Rathinam, Sivakumar</creatorcontrib><creatorcontrib>Casbeer, David W.</creatorcontrib><creatorcontrib>Manyam, Satyanarayana G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darbha, Swaroop</au><au>Pavan, Athindra</au><au>Kumbakonam, Rajagopal</au><au>Rathinam, Sivakumar</au><au>Casbeer, David W.</au><au>Manyam, Satyanarayana G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>197</volume><issue>3</issue><spage>966</spage><epage>992</epage><pages>966-992</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius r &lt; 1 , where r depends on the bound, U max . We show in this article that if 0 &lt; r ≤ 1 2 , the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if C is the smaller circular arc and G is the great circular arc, then the optimal path can only be CCC ,  CGC ,  CC ,  CG ,  GC ,  C or G . If r &gt; 1 2 , while paths of the above type may cease to exist depending on the boundary conditions and the value of r , optimal paths may be concatenations of more than three circular arcs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-023-02206-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0881-5672</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2023-06, Vol.197 (3), p.966-992
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2819764475
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Curvature
Engineering
Mathematics
Mathematics and Statistics
Motion planning
Operations Research/Decision Theory
Optimization
Rigid structures
Robots
Theory of Computation
title Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Geodesic%20Curvature%20Constrained%20Dubins%E2%80%99%20Paths%20on%20a%20Sphere&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Darbha,%20Swaroop&rft.date=2023-06-01&rft.volume=197&rft.issue=3&rft.spage=966&rft.epage=992&rft.pages=966-992&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-023-02206-3&rft_dat=%3Cproquest_cross%3E2819764475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819764475&rft_id=info:pmid/&rfr_iscdi=true