Optimal Geodesic Curvature Constrained Dubins’ Paths on a Sphere
In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, U max , of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when tr...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2023-06, Vol.197 (3), p.966-992 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value,
U
max
, of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius
r
<
1
, where
r
depends on the bound,
U
max
. We show in this article that if
0
<
r
≤
1
2
, the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if
C
is the smaller circular arc and
G
is the great circular arc, then the optimal path can only be
CCC
,
CGC
,
CC
,
CG
,
GC
,
C
or
G
. If
r
>
1
2
, while paths of the above type may cease to exist depending on the boundary conditions and the value of
r
, optimal paths may be concatenations of more than three circular arcs. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-023-02206-3 |