Uniform distribution in nilmanifolds along functions from a Hardy field
We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if X = G/ Γ is a nilmanifold, a 1 , …, a k ∈ G are commuting nilrotations, and f 1 , …, f k are functions of polynomial growth from a Hardy field then we show...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2023-04, Vol.149 (2), p.421-483 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if
X
=
G/
Γ is a nilmanifold,
a
1
, …,
a
k
∈
G
are commuting nilrotations, and
f
1
, …,
f
k
are functions of polynomial growth from a Hardy field then we show that
the distribution of the sequence
a
1
f
1
(
n
)
⋯
a
k
f
k
(
n
)
Γ
is governed by its projection onto the maximal factor torus, which extends Leibman’s Equidistribution Criterion from polynomials to a much wider range of functions; and
the orbit closure of
a
1
f
1
(
n
)
⋯
a
k
f
k
(
n
)
Γ
is always a finite union of sub-nilmanifolds, which extends previous work of Leibman and Frantzikinakis on this topic. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-022-0253-0 |