Uniform distribution in nilmanifolds along functions from a Hardy field

We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if X = G/ Γ is a nilmanifold, a 1 , …, a k ∈ G are commuting nilrotations, and f 1 , …, f k are functions of polynomial growth from a Hardy field then we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2023-04, Vol.149 (2), p.421-483
1. Verfasser: Richter, Florian K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if X = G/ Γ is a nilmanifold, a 1 , …, a k ∈ G are commuting nilrotations, and f 1 , …, f k are functions of polynomial growth from a Hardy field then we show that the distribution of the sequence a 1 f 1 ( n ) ⋯ a k f k ( n ) Γ is governed by its projection onto the maximal factor torus, which extends Leibman’s Equidistribution Criterion from polynomials to a much wider range of functions; and the orbit closure of a 1 f 1 ( n ) ⋯ a k f k ( n ) Γ is always a finite union of sub-nilmanifolds, which extends previous work of Leibman and Frantzikinakis on this topic.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-022-0253-0