Multiresolution wavelet analysis of transients: numerical simulations and application to EEG

We explore the capabilities of multiresolution wavelet analysis (MWA) to characterize complex dynamics based on short data sets that can be applied for diagnosing inter-state transitions. Using the example of chaos–hyperchaos transitions in the model of two interacting Rössler systems, we establish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2023-05, Vol.232 (5), p.635-641
Hauptverfasser: Guyo, G. A., Pavlova, O. N., Blokhina, I. A., Semyachkina-Glushkovskaya, O. V., Pavlov, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the capabilities of multiresolution wavelet analysis (MWA) to characterize complex dynamics based on short data sets that can be applied for diagnosing inter-state transitions. Using the example of chaos–hyperchaos transitions in the model of two interacting Rössler systems, we establish the minimum amount of data necessary for reliable separation of chaotic and hyperchaotic oscillations and discuss how this amount changes depending on the length of the transient process. We then discuss transitions between wakefulness and artificial sleep in mice and estimate the duration of electroencephalograms (EEG) that provide separation between these states.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-022-00710-7