Multiresolution wavelet analysis of transients: numerical simulations and application to EEG
We explore the capabilities of multiresolution wavelet analysis (MWA) to characterize complex dynamics based on short data sets that can be applied for diagnosing inter-state transitions. Using the example of chaos–hyperchaos transitions in the model of two interacting Rössler systems, we establish...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2023-05, Vol.232 (5), p.635-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the capabilities of multiresolution wavelet analysis (MWA) to characterize complex dynamics based on short data sets that can be applied for diagnosing inter-state transitions. Using the example of chaos–hyperchaos transitions in the model of two interacting Rössler systems, we establish the minimum amount of data necessary for reliable separation of chaotic and hyperchaotic oscillations and discuss how this amount changes depending on the length of the transient process. We then discuss transitions between wakefulness and artificial sleep in mice and estimate the duration of electroencephalograms (EEG) that provide separation between these states. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjs/s11734-022-00710-7 |