Hodge decomposition for generalized Vekua spaces in higher dimensions
We introduce the spaces \(A^p_{\alpha, \beta}(\Omega)\) of \(L^p\)-solutions to the Vekua equation (generalized monogenic functions) \(D w=\alpha\overline{w}+\beta w\) in a bounded domain in \(\mathbb{R}^n\), where \(D=\sum_{i=1}^n e_i \partial_i\) is the Moisil-Teodorescu operator, \(\alpha\) and \...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the spaces \(A^p_{\alpha, \beta}(\Omega)\) of \(L^p\)-solutions to the Vekua equation (generalized monogenic functions) \(D w=\alpha\overline{w}+\beta w\) in a bounded domain in \(\mathbb{R}^n\), where \(D=\sum_{i=1}^n e_i \partial_i\) is the Moisil-Teodorescu operator, \(\alpha\) and \(\beta\) are bounded functions on \(\Omega\). The main result of this work consists of a Hodge decomposition of the \(L^2\) solutions of the Vekua equation, from this orthogonal decomposition arises an operator associated with the Vekua operator, which in turn factorizes certain Schr\"odinger operators. Moreover, we provide an explicit expression of the ortho-projection over \(A^p_{\alpha, \beta}(\Omega)\) in terms of the well-known ortho-projection of \(L^2\) monogenic functions and an isomorphism operator. Finally, we prove the existence of component-wise reproductive Vekua kernels and the interrelationship with the Vekua projection in Bergman's sense. |
---|---|
ISSN: | 2331-8422 |