On the Lefschetz Principle for \(\mathrm{GL}(n,\mathbb{C})\) and \(\mathrm{GL}(m,\mathbb{Q}_p)\)
We construct an exact functor from the category of Harish-Chandra modules of \(\mathrm{GL}_n(\mathbb C)\) to the category of finite-dimensional modules of graded Hecke algebras of type A. We show that the functor preserves parabolically induced modules, standard modules, irreducible modules, unitary...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct an exact functor from the category of Harish-Chandra modules of \(\mathrm{GL}_n(\mathbb C)\) to the category of finite-dimensional modules of graded Hecke algebras of type A. We show that the functor preserves parabolically induced modules, standard modules, irreducible modules, unitary modules and Dirac series. We also use the functor to connect a Bernstein-Zelevinsky type functor for graded Hecke algebra side to the tensor product for \(\mathrm{GL}_n(\mathbb C)\) side. Some applications are also discussed. |
---|---|
ISSN: | 2331-8422 |