On the Lefschetz Principle for \(\mathrm{GL}(n,\mathbb{C})\) and \(\mathrm{GL}(m,\mathbb{Q}_p)\)

We construct an exact functor from the category of Harish-Chandra modules of \(\mathrm{GL}_n(\mathbb C)\) to the category of finite-dimensional modules of graded Hecke algebras of type A. We show that the functor preserves parabolically induced modules, standard modules, irreducible modules, unitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Kei Yuen Chan, Wong, Kayue Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct an exact functor from the category of Harish-Chandra modules of \(\mathrm{GL}_n(\mathbb C)\) to the category of finite-dimensional modules of graded Hecke algebras of type A. We show that the functor preserves parabolically induced modules, standard modules, irreducible modules, unitary modules and Dirac series. We also use the functor to connect a Bernstein-Zelevinsky type functor for graded Hecke algebra side to the tensor product for \(\mathrm{GL}_n(\mathbb C)\) side. Some applications are also discussed.
ISSN:2331-8422