Synergism of a Novel Bio-Based Surfactant Derived from Pisum sativum and Formation Brine for Chemical Enhanced Oil Recovery in Carbonate Oil Reservoirs
The Pisum sativum (PS), known as the green pea, was used in this investigation to produce a novel green surfactant. The performance of the PS green surfactant was also evaluated using various tests, including contact angle, IFT, emulsion, zeta potential, and oil recovery factor measurement in the pr...
Gespeichert in:
Veröffentlicht in: | Processes 2023-04, Vol.11 (5), p.1361 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Pisum sativum (PS), known as the green pea, was used in this investigation to produce a novel green surfactant. The performance of the PS green surfactant was also evaluated using various tests, including contact angle, IFT, emulsion, zeta potential, and oil recovery factor measurement in the presence of formation brine (FB) with a total dissolved solid (TDS) of 150,000 ppm. The characterization study using various tests revealed that the PS green surfactant was nonionic. The critical micelle concentration (CMC) measurement results indicated that the PS green surfactant’s CMC value is 1500 ppm. The IFT and contact angle measurements showed that the green surfactant significantly lowered the IFT and contact angles. The lowest IFT value of 3.71 mN/m and the contact angle of 57.37° were achieved at the FB concentration of 12,500 ppm (optimum salinity). The results of the emulsion tests showed that Winsor type III emulsions were achieved using PS green surfactant and crude oil. The core flooding experiments revealed that the tertiary recovery using a solution of 1500 ppm of PS green surfactant and 12,500 ppm of FB resulted in a maximum oil recovery factor of 83.55%. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr11051361 |