To Transfer or Not to Transfer and Why? Meta-Transfer Learning for Explainable and Controllable Cross-Individual Activity Recognition
Human activity recognition (HAR) plays a central role in ubiquitous computing applications such as health monitoring. In the real world, it is impractical to perform reliably and consistently over time across a population of individuals due to the cross-individual variation in human behavior. Existi...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-05, Vol.12 (10), p.2275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human activity recognition (HAR) plays a central role in ubiquitous computing applications such as health monitoring. In the real world, it is impractical to perform reliably and consistently over time across a population of individuals due to the cross-individual variation in human behavior. Existing transfer learning algorithms suffer the challenge of “negative transfer”. Moreover, these strategies are entirely black-box. To tackle these issues, we propose X-WRAP (eXplain, Weight and Rank Activity Prediction), a simple but effective approach for cross-individual HAR, which improves the performance, transparency, and ease of control for stakeholders in HAR. X-WRAP works by wrapping transfer learning into a meta-learning loop that identifies the approximately optimal source individuals. The candidate source domains are ranked using a linear scoring function based on interpretable meta-features capturing the properties of the source domains. X-WRAP is optimized using Bayesian optimization. Experiments conducted on a publicly available dataset show that the model can effectively improve the performance of transfer learning models consistently. In addition, X-WRAP can provide interpretable analysis according to the meta-features, making it possible for stakeholders to get a high-level understanding of selective transfer. In addition, an extensive empirical analysis demonstrates the promise of the approach to outperform in data-sparse situations. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics12102275 |