Longtime Dynamics of a Semilinear Lamé System
This paper is concerned with longtime dynamics of semilinear Lamé systems ∂ t 2 u - μ Δ u - ( λ + μ ) ∇ div u + α ∂ t u + f ( u ) = b , defined in bounded domains of R 3 with Dirichlet boundary condition. Firstly, we establish the existence of finite dimensional global attractors subjected to a crit...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2023-06, Vol.35 (2), p.1435-1456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with longtime dynamics of semilinear Lamé systems
∂
t
2
u
-
μ
Δ
u
-
(
λ
+
μ
)
∇
div
u
+
α
∂
t
u
+
f
(
u
)
=
b
,
defined in bounded domains of
R
3
with Dirichlet boundary condition. Firstly, we establish the existence of finite dimensional global attractors subjected to a critical forcing
f
(
u
). Writing
λ
+
μ
as a positive parameter
ε
, we discuss some physical aspects of the limit case
ε
→
0
. Then, we show the upper-semicontinuity of attractors with respect to the parameter when
ε
→
0
. To our best knowledge, the analysis of attractors for dynamics of Lamé systems has not been studied before. |
---|---|
ISSN: | 1040-7294 1572-9222 |
DOI: | 10.1007/s10884-021-09955-7 |