Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method

The objective of the present study was to examine the influence of sonication by power ultrasonic waves during thin layer drying of cumin seeds. To achieve this, a lab scale ultrasound assisted air drying unit was developed and built to dry cumin seeds at air temperatures of 30, 35, and 40 ºC, airfl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2023-06, Vol.59 (6), p.1073-1091
Hauptverfasser: Namjoo, Moslem, Moradi, Mehdi, Niakousari, Mehrdad, Karparvarfard, Seyed Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the present study was to examine the influence of sonication by power ultrasonic waves during thin layer drying of cumin seeds. To achieve this, a lab scale ultrasound assisted air drying unit was developed and built to dry cumin seeds at air temperatures of 30, 35, and 40 ºC, airflow velocity of 0.6, 0.8, 1 m/s, and sonication power of 0, 90, 180 W. The experiments were designed by response surface methodology and drying time, effective moisture diffusivity, energy consumption, color change, and rupture force of the end-product were examined. The key results revealed that the use a physical field processing such as ultrasound increases the drying overall performance in terms of drying time, kinetics as well as quality attributes such as color. The air born sonication process while drying not only enhances the energy efficiency through rise in effective moisture diffusivity but also decreases the energy consumption by almost 40%. It is interesting that the sonication positively correlated with (P-value 
ISSN:0947-7411
1432-1181
DOI:10.1007/s00231-022-03306-y