Learning Subpocket Prototypes for Generalizable Structure-based Drug Design
Generating molecules with high binding affinities to target proteins (a.k.a. structure-based drug design) is a fundamental and challenging task in drug discovery. Recently, deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket. However,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generating molecules with high binding affinities to target proteins (a.k.a. structure-based drug design) is a fundamental and challenging task in drug discovery. Recently, deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket. However, most existing methods consider molecular generation for protein pockets independently while neglecting the underlying connections such as subpocket-level similarities. Subpockets are the local protein environments of ligand fragments and pockets with similar subpockets may bind the same molecular fragment (motif) even though their overall structures are different. Therefore, the trained models can hardly generalize to unseen protein pockets in real-world applications. In this paper, we propose a novel method DrugGPS for generalizable structure-based drug design. With the biochemical priors, we propose to learn subpocket prototypes and construct a global interaction graph to model the interactions between subpocket prototypes and molecular motifs. Moreover, a hierarchical graph transformer encoder and motif-based 3D molecule generation scheme are used to improve the model's performance. The experimental results show that our model consistently outperforms baselines in generating realistic drug candidates with high affinities in challenging out-of-distribution settings. |
---|---|
ISSN: | 2331-8422 |