On the local edge (a, d)-Antimagic coloring of graphs: A new notion

Let G(V, E) be a connected, simple, and finite graph, with |V(G)| = p and |E(G)| = q. A bijection f : V (G) → {1,2,3,...,p} is called an edge antimagic labeling of graph if the element of the edge weight set w(uv) = f (u) + f (v), where uv ∈ E(G), are distinct. The edge antimagic labeling induces a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agustin, I. H., Dafik, D., Kurniawati, E. Y., Marsidi, M., Mohanapriya, N., Kristiana, A. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G(V, E) be a connected, simple, and finite graph, with |V(G)| = p and |E(G)| = q. A bijection f : V (G) → {1,2,3,...,p} is called an edge antimagic labeling of graph if the element of the edge weight set w(uv) = f (u) + f (v), where uv ∈ E(G), are distinct. The edge antimagic labeling induces a local edge antimagic coloring of G if each edge e ∈ E(G) is colored by the weight w(e). The local edge antimagic coloring of graph is said to be a local edge (a, d)-antimagic coloring of G if the set of their edge colors form an arithmetic sequence with initial value a and different d. Furthermore, the local edge (a, d)-antimagic chromatic numbers, denoted by χle(a,d)(G), is the minimum number of colors needed to color G such that a graph G admits local edge (a, d)-antimagic coloring. In this paper, we will obtain the lower and upper bound of χle(a,d)(G) including to determine the exact of value of the local edge (a, d)-antimagic chromatic number of some graph classes.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0137794