Scanning integer points with lex-inequalities: a finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that define the convex hull of the integer points in K that are not lexicographically smaller than x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:4OR 2021-12, Vol.19 (4), p.531-548
Hauptverfasser: Conforti, Michele, De Santis, Marianna, Di Summa, Marco, Rinaldi, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that define the convex hull of the integer points in K that are not lexicographically smaller than x . The family of lex-inequalities contains the Chvátal–Gomory cuts, but does not contain and is not contained in the family of split cuts. This provides a finite cutting plane method to solve the integer program min { c x : x ∈ S ∩ Z n } , where S ⊂ R n is a compact set and c ∈ Z n . We analyze the number of iterations of our algorithm.
ISSN:1619-4500
1614-2411
DOI:10.1007/s10288-020-00459-6